69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581 | class BaseEmbedding(TransformComponent, DispatcherSpanMixin):
"""Base class for embeddings."""
model_config = ConfigDict(
protected_namespaces=("pydantic_model_",), arbitrary_types_allowed=True
)
model_name: str = Field(
default="unknown", description="The name of the embedding model."
)
embed_batch_size: int = Field(
default=DEFAULT_EMBED_BATCH_SIZE,
description="The batch size for embedding calls.",
gt=0,
le=2048,
)
callback_manager: CallbackManager = Field(
default_factory=lambda: CallbackManager([]), exclude=True
)
num_workers: Optional[int] = Field(
default=None,
description="The number of workers to use for async embedding calls.",
)
embeddings_cache: Optional[Any] = Field(
default=None,
description="Cache for the embeddings: if None, the embeddings are not cached",
)
@model_validator(mode="after")
def check_base_embeddings_class(self) -> Self:
from llama_index.core.storage.kvstore.types import BaseKVStore
if self.callback_manager is None:
self.callback_manager = CallbackManager([])
if self.embeddings_cache is not None and not isinstance(
self.embeddings_cache, BaseKVStore
):
raise TypeError("embeddings_cache must be of type BaseKVStore")
return self
@abstractmethod
def _get_query_embedding(self, query: str) -> Embedding:
"""
Embed the input query synchronously.
Subclasses should implement this method. Reference get_query_embedding's
docstring for more information.
"""
@abstractmethod
async def _aget_query_embedding(self, query: str) -> Embedding:
"""
Embed the input query asynchronously.
Subclasses should implement this method. Reference get_query_embedding's
docstring for more information.
"""
@dispatcher.span
def get_query_embedding(self, query: str) -> Embedding:
"""
Embed the input query.
When embedding a query, depending on the model, a special instruction
can be prepended to the raw query string. For example, "Represent the
question for retrieving supporting documents: ". If you're curious,
other examples of predefined instructions can be found in
embeddings/huggingface_utils.py.
"""
model_dict = self.to_dict()
model_dict.pop("api_key", None)
dispatcher.event(
EmbeddingStartEvent(
model_dict=model_dict,
)
)
with self.callback_manager.event(
CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}
) as event:
if not self.embeddings_cache:
query_embedding = self._get_query_embedding(query)
elif self.embeddings_cache is not None:
cached_emb = self.embeddings_cache.get(
key=query, collection="embeddings"
)
if cached_emb is not None:
cached_key = next(iter(cached_emb.keys()))
query_embedding = cached_emb[cached_key]
else:
query_embedding = self._get_query_embedding(query)
self.embeddings_cache.put(
key=query,
val={str(uuid.uuid4()): query_embedding},
collection="embeddings",
)
event.on_end(
payload={
EventPayload.CHUNKS: [query],
EventPayload.EMBEDDINGS: [query_embedding],
},
)
dispatcher.event(
EmbeddingEndEvent(
chunks=[query],
embeddings=[query_embedding],
)
)
return query_embedding
@dispatcher.span
async def aget_query_embedding(self, query: str) -> Embedding:
"""Get query embedding."""
model_dict = self.to_dict()
model_dict.pop("api_key", None)
dispatcher.event(
EmbeddingStartEvent(
model_dict=model_dict,
)
)
with self.callback_manager.event(
CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}
) as event:
if not self.embeddings_cache:
query_embedding = await self._aget_query_embedding(query)
elif self.embeddings_cache is not None:
cached_emb = await self.embeddings_cache.aget(
key=query, collection="embeddings"
)
if cached_emb is not None:
cached_key = next(iter(cached_emb.keys()))
query_embedding = cached_emb[cached_key]
else:
query_embedding = await self._aget_query_embedding(query)
await self.embeddings_cache.aput(
key=query,
val={str(uuid.uuid4()): query_embedding},
collection="embeddings",
)
event.on_end(
payload={
EventPayload.CHUNKS: [query],
EventPayload.EMBEDDINGS: [query_embedding],
},
)
dispatcher.event(
EmbeddingEndEvent(
chunks=[query],
embeddings=[query_embedding],
)
)
return query_embedding
def get_agg_embedding_from_queries(
self,
queries: List[str],
agg_fn: Optional[Callable[..., Embedding]] = None,
) -> Embedding:
"""Get aggregated embedding from multiple queries."""
query_embeddings = [self.get_query_embedding(query) for query in queries]
agg_fn = agg_fn or mean_agg
return agg_fn(query_embeddings)
async def aget_agg_embedding_from_queries(
self,
queries: List[str],
agg_fn: Optional[Callable[..., Embedding]] = None,
) -> Embedding:
"""Async get aggregated embedding from multiple queries."""
query_embeddings = [await self.aget_query_embedding(query) for query in queries]
agg_fn = agg_fn or mean_agg
return agg_fn(query_embeddings)
@abstractmethod
def _get_text_embedding(self, text: str) -> Embedding:
"""
Embed the input text synchronously.
Subclasses should implement this method. Reference get_text_embedding's
docstring for more information.
"""
async def _aget_text_embedding(self, text: str) -> Embedding:
"""
Embed the input text asynchronously.
Subclasses can implement this method if there is a true async
implementation. Reference get_text_embedding's docstring for more
information.
"""
# Default implementation just falls back on _get_text_embedding
return self._get_text_embedding(text)
def _get_text_embeddings(self, texts: List[str]) -> List[Embedding]:
"""
Embed the input sequence of text synchronously.
Subclasses can implement this method if batch queries are supported.
"""
# Default implementation just loops over _get_text_embedding
return [self._get_text_embedding(text) for text in texts]
async def _aget_text_embeddings(self, texts: List[str]) -> List[Embedding]:
"""
Embed the input sequence of text asynchronously.
Subclasses can implement this method if batch queries are supported.
"""
return await asyncio.gather(
*[self._aget_text_embedding(text) for text in texts]
)
@dispatcher.span
def get_text_embedding(self, text: str) -> Embedding:
"""
Embed the input text.
When embedding text, depending on the model, a special instruction
can be prepended to the raw text string. For example, "Represent the
document for retrieval: ". If you're curious, other examples of
predefined instructions can be found in embeddings/huggingface_utils.py.
"""
model_dict = self.to_dict()
model_dict.pop("api_key", None)
dispatcher.event(
EmbeddingStartEvent(
model_dict=model_dict,
)
)
with self.callback_manager.event(
CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}
) as event:
if not self.embeddings_cache:
text_embedding = self._get_text_embedding(text)
elif self.embeddings_cache is not None:
cached_emb = self.embeddings_cache.get(
key=text, collection="embeddings"
)
if cached_emb is not None:
cached_key = next(iter(cached_emb.keys()))
text_embedding = cached_emb[cached_key]
else:
text_embedding = self._get_text_embedding(text)
self.embeddings_cache.put(
key=text,
val={str(uuid.uuid4()): text_embedding},
collection="embeddings",
)
event.on_end(
payload={
EventPayload.CHUNKS: [text],
EventPayload.EMBEDDINGS: [text_embedding],
}
)
dispatcher.event(
EmbeddingEndEvent(
chunks=[text],
embeddings=[text_embedding],
)
)
return text_embedding
@dispatcher.span
async def aget_text_embedding(self, text: str) -> Embedding:
"""Async get text embedding."""
model_dict = self.to_dict()
model_dict.pop("api_key", None)
dispatcher.event(
EmbeddingStartEvent(
model_dict=model_dict,
)
)
with self.callback_manager.event(
CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}
) as event:
if not self.embeddings_cache:
text_embedding = await self._aget_text_embedding(text)
elif self.embeddings_cache is not None:
cached_emb = await self.embeddings_cache.aget(
key=text, collection="embeddings"
)
if cached_emb is not None:
cached_key = next(iter(cached_emb.keys()))
text_embedding = cached_emb[cached_key]
else:
text_embedding = await self._aget_text_embedding(text)
await self.embeddings_cache.aput(
key=text,
val={str(uuid.uuid4()): text_embedding},
collection="embeddings",
)
event.on_end(
payload={
EventPayload.CHUNKS: [text],
EventPayload.EMBEDDINGS: [text_embedding],
}
)
dispatcher.event(
EmbeddingEndEvent(
chunks=[text],
embeddings=[text_embedding],
)
)
return text_embedding
@dispatcher.span
def get_text_embedding_batch(
self,
texts: List[str],
show_progress: bool = False,
**kwargs: Any,
) -> List[Embedding]:
"""Get a list of text embeddings, with batching."""
cur_batch: List[str] = []
result_embeddings: List[Embedding] = []
queue_with_progress = enumerate(
get_tqdm_iterable(texts, show_progress, "Generating embeddings")
)
model_dict = self.to_dict()
model_dict.pop("api_key", None)
for idx, text in queue_with_progress:
cur_batch.append(text)
if idx == len(texts) - 1 or len(cur_batch) == self.embed_batch_size:
# flush
dispatcher.event(
EmbeddingStartEvent(
model_dict=model_dict,
)
)
with self.callback_manager.event(
CBEventType.EMBEDDING,
payload={EventPayload.SERIALIZED: self.to_dict()},
) as event:
if not self.embeddings_cache:
embeddings = self._get_text_embeddings(cur_batch)
elif self.embeddings_cache is not None:
embeddings = []
for txt in cur_batch:
cached_emb = self.embeddings_cache.get(
key=txt, collection="embeddings"
)
if cached_emb is not None:
cached_key = next(iter(cached_emb.keys()))
embeddings.append(cached_emb[cached_key])
else:
text_embedding = self._get_text_embedding(txt)
embeddings.append(text_embedding)
self.embeddings_cache.put(
key=txt,
val={str(uuid.uuid4()): text_embedding},
collection="embeddings",
)
result_embeddings.extend(embeddings)
event.on_end(
payload={
EventPayload.CHUNKS: cur_batch,
EventPayload.EMBEDDINGS: embeddings,
},
)
dispatcher.event(
EmbeddingEndEvent(
chunks=cur_batch,
embeddings=embeddings,
)
)
cur_batch = []
return result_embeddings
@dispatcher.span
async def aget_text_embedding_batch(
self, texts: List[str], show_progress: bool = False
) -> List[Embedding]:
"""Asynchronously get a list of text embeddings, with batching."""
num_workers = self.num_workers
model_dict = self.to_dict()
model_dict.pop("api_key", None)
cur_batch: List[str] = []
pre_recorded_embs: List[Embedding] = []
non_cached_txts: List[str] = []
callback_payloads: List[Tuple[str, List[str]]] = []
result_embeddings: List[Embedding] = []
embeddings_coroutines: List[Coroutine] = []
for idx, text in enumerate(texts):
cur_batch.append(text)
if idx == len(texts) - 1 or len(cur_batch) == self.embed_batch_size:
# flush
dispatcher.event(
EmbeddingStartEvent(
model_dict=model_dict,
)
)
event_id = self.callback_manager.on_event_start(
CBEventType.EMBEDDING,
payload={EventPayload.SERIALIZED: self.to_dict()},
)
callback_payloads.append((event_id, cur_batch))
if not self.embeddings_cache:
embeddings_coroutines.append(self._aget_text_embeddings(cur_batch))
elif self.embeddings_cache is not None:
for txt in cur_batch:
cached_emb = self.embeddings_cache.get(
key=txt, collection="embeddings"
)
if cached_emb is not None:
cached_key = next(iter(cached_emb.keys()))
pre_recorded_embs.append(cached_emb[cached_key])
else:
embeddings_coroutines.append(
self._aget_text_embeddings([txt])
)
non_cached_txts.append(txt)
cur_batch = []
# flatten the results of asyncio.gather, which is a list of embeddings lists
nested_embeddings = []
if len(embeddings_coroutines) > 0:
if num_workers and num_workers > 1:
nested_embeddings = await run_jobs(
embeddings_coroutines,
show_progress=show_progress,
workers=self.num_workers,
desc="Generating embeddings",
)
else:
if show_progress:
try:
from tqdm.asyncio import tqdm_asyncio
nested_embeddings = await tqdm_asyncio.gather(
*embeddings_coroutines,
total=len(embeddings_coroutines),
desc="Generating embeddings",
)
except ImportError:
nested_embeddings = await asyncio.gather(*embeddings_coroutines)
else:
nested_embeddings = await asyncio.gather(*embeddings_coroutines)
result_embeddings = [
embedding for embeddings in nested_embeddings for embedding in embeddings
]
if self.embeddings_cache is not None:
if len(result_embeddings) > 0:
for j in range(len(result_embeddings)):
self.embeddings_cache.put(
key=non_cached_txts[j],
val={str(uuid.uuid4()): result_embeddings[j]},
collection="embeddings",
)
result_embeddings += pre_recorded_embs
else:
result_embeddings += pre_recorded_embs
for (event_id, text_batch), embeddings in zip(
callback_payloads, nested_embeddings
):
dispatcher.event(
EmbeddingEndEvent(
chunks=text_batch,
embeddings=embeddings,
)
)
self.callback_manager.on_event_end(
CBEventType.EMBEDDING,
payload={
EventPayload.CHUNKS: text_batch,
EventPayload.EMBEDDINGS: embeddings,
},
event_id=event_id,
)
return result_embeddings
def similarity(
self,
embedding1: Embedding,
embedding2: Embedding,
mode: SimilarityMode = SimilarityMode.DEFAULT,
) -> float:
"""Get embedding similarity."""
return similarity(embedding1=embedding1, embedding2=embedding2, mode=mode)
def __call__(self, nodes: Sequence[BaseNode], **kwargs: Any) -> Sequence[BaseNode]:
embeddings = self.get_text_embedding_batch(
[node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes],
**kwargs,
)
for node, embedding in zip(nodes, embeddings):
node.embedding = embedding
return nodes
async def acall(
self, nodes: Sequence[BaseNode], **kwargs: Any
) -> Sequence[BaseNode]:
embeddings = await self.aget_text_embedding_batch(
[node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes],
**kwargs,
)
for node, embedding in zip(nodes, embeddings):
node.embedding = embedding
return nodes
|